The NF-κB-modulated microRNAs miR-195 and miR-497 inhibit myoblast proliferation by targeting Igf1r, Insr and cyclin genes.
نویسندگان
چکیده
MicroRNAs (miRNAs) play important roles in the development of skeletal muscle. In our previous study, expression of miR-195 and miR-497 were shown to be upregulated during muscle development in pigs. In this study, we investigated the roles of these two miRNAs in myogenesis and analyzed their transcriptional regulation. Our results showed that miR-195 and miR-497 were upregulated during muscle development and myoblast differentiation. Moreover, miR-195 and miR-497 inhibited proliferation but not differentiation in C2C12 cells. Further investigation revealed that Igf1r, Insr, Ccnd2 and Ccne1 were directly targeted by miR-195 and miR-497 in myoblasts. In addition, we confirmed that miR-195 and miR-497, which shared the similar expression profiling, were negatively regulated by nuclear factor κB (NF-κB) in both myoblasts and skeletal muscle tissue. Our data illustrate that the signaling pathway NF-κB-miR-195/497-Igf1r/Insr-Ccnd2/Ccne1 plays important roles in myogenesis. Our study provides novel evidence for the roles of miR-195 and miR-497 in muscle development.
منابع مشابه
Regulatory Axis of miR-195/497 and HMGA1-Id3 Governs Muscle Cell Proliferation and Differentiation
Myocytes withdraw from the cell cycle to differentiate during muscle development. Given the capacity of microRNAs (miRNAs) to regulate gene expression during development, we screened for miRNAs that were associated with muscle development. S-Poly(T) Plus analysis of 273 miRNAs in porcine longissimus dorsi muscles revealed 14 miRNAs that were strongly upregulated with age of postnatal muscle dev...
متن کاملMicroRNA-195 Inhibits the Proliferation of Human Glioma Cells by Directly Targeting Cyclin D1 and Cyclin E1
Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, w...
متن کاملFatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer
Fatty acid synthase (FASN) is upregulated in breast cancer and correlates with poor prognosis. FASN contributes to mammary oncogenesis and serves as a bona fide target in cancer therapies. MicroRNAs inhibit gene expression through blocking mRNA translation or promoting mRNA degradation by targeting their 3'-UTRs. We identified four microRNAs in two microRNA clusters miR-15a-16-1 and miR-497-195...
متن کاملMechanical stretch regulates microRNA expression profile via NF-κB activation in C2C12 myoblasts
MicroRNAs (miRNAs/miRs) and nuclear factor (NF)-κB activation are involved in mechanical stretch-induced skeletal muscle regeneration. However, there are a small number of miRNAs that have been reported to be associated with NF‑κB activation during mechanical stretch-induced myogenesis. In the present study, C2C12 myoblasts underwent cyclic mechanical stretch in vitro, to explore the relationsh...
متن کاملCo-targeting of IGF1R/mTOR pathway by miR-497 and miR-99a impairs hepatocellular carcinoma development
Persistent activation of IGF1R/mTOR signaling pathway plays crucial role in the development of hepatocellular carcinoma (HCC). Therefore, our goal was to elucidate microRNAs (miRNAs) targeting IGF1R/mTOR and the therapeutic potential of single or dual miRNA on HCC development. In this study, we found that miR-497 and miR-99a that target the 3'-UTR of both IGF1R and mTOR were down-regulated in H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 129 1 شماره
صفحات -
تاریخ انتشار 2016